Jump to content

Portal:Biology

From Wikipedia, the free encyclopedia

The Biology Portal

Introduction

A panoramic view from a ridge located between Segla and Hesten mountain summits in the island of Senja, Troms, Norway in 2014
A panoramic view from a ridge located between Segla and Hesten mountain summits in the island of Senja, Troms, Norway in 2014

Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of at least one cell that processes hereditary information encoded in genes, which can be transmitted to future generations. Another major theme is evolution, which explains the unity and diversity of life. Energy processing is also important to life as it allows organisms to move, grow, and reproduce. Finally, all organisms are able to regulate their own internal environments.

Biologists are able to study life at multiple levels of organization, from the molecular biology of a cell to the anatomy and physiology of plants and animals, and evolution of populations. Hence, there are multiple subdisciplines within biology, each defined by the nature of their research questions and the tools that they use. Like other scientists, biologists use the scientific method to make observations, pose questions, generate hypotheses, perform experiments, and form conclusions about the world around them.

Life on Earth, which emerged more than 3.7 billion years ago, is immensely diverse. Biologists have sought to study and classify the various forms of life, from prokaryotic organisms such as archaea and bacteria to eukaryotic organisms such as protists, fungi, plants, and animals. These various organisms contribute to the biodiversity of an ecosystem, where they play specialized roles in the cycling of nutrients and energy through their biophysical environment. (Full article...)

Molecular models of DNA structures are representations of the molecular geometry and topology of deoxyribonucleic acid (DNA) molecules using one of several means, with the aim of simplifying and presenting the essential, physical and chemical, properties of DNA molecular structures either in vivo or in vitro. These representations include closely packed spheres (CPK models) made of plastic, metal wires for skeletal models, graphic computations and animations by computers, artistic rendering. Computer molecular models also allow animations and molecular dynamics simulations that are very important for understanding how DNA functions in vivo.

The more advanced, computer-based molecular models of DNA involve molecular dynamics simulations and quantum mechanics computations of vibro-rotations, delocalized molecular orbitals (MOs), electric dipole moments, hydrogen-bonding, and so on. DNA molecular dynamics modeling involves simulating deoxyribonucleic acid (DNA) molecular geometry and topology changes with time as a result of both intra- and inter- molecular interactions of DNA. Whereas molecular models of DNA molecules such as closely packed spheres (CPK models) made of plastic or metal wires for skeletal models are useful representations of static DNA structures, their usefulness is very limited for representing complex DNA dynamics. Computer molecular modeling allows both animations and molecular dynamics simulations that are very important to understand how DNA functions in vivo. (Full article...)

List of selected articles

Selected picture - show another

Photo credit: Exlibris
The vibrissae of a culpeo (Pseudalopex culpaeus), sometimes known as the Patagonian fox, a South American canid.

Major topics

History History of biology | timeline of biology and organic chemistry | history of ecology | history of evolutionary thought | history of geology | history of model organisms | history of molecular biology | history of paleontology
Overview Biology | science | life | properties (adaptationenergy processinggrowthorderregulationreproduction, and response to environment) | hierarchy of life (atommoleculeorganellecelltissueorganorgan systemorganismpopulationcommunityecosystembiosphere) | reductionistic | emergent property | mechanistic | scientific method | theory | law | peer review | biology journals
Chemical basis Matter | elements | compounds | atoms | molecules | chemical bonds | carbon | organic compounds | macromolecules | carbohydrate | protein | protein structure | protein folding | lipid | DNA | RNA
Cells Prokaryote | eukaryote | cell wall | cell membrane | cytoskeleton | mitochondrion | chloroplast | nucleus | endoplasmic reticulum | Golgi apparatus | cell cycle | mitosis | metabolism | cell signaling | protein targeting | metabolism | enzyme | glycolysis | citric acid cycle | electron transport chain | oxidative phosphorylation |photosynthesis |meiosis  | mitosis
Genetics (Intro) Classical genetics | mendelian inheritance | gene | phenotype | genotype | ploidy | alternation of generations | molecular genetics | gene expression | gene regulation | genome | karyotype | DNA replication | transcription | translation | recombination | chromosome | epigenetics | splicing | mutation | genetic fingerprint | chromatin | ecological genetics | population genetics | quantitative genetics
Evolution (Intro)  | omne vivum ex ovo | Natural selection | genetic drift | sexual selection | speciation | mutation | gene flow | evolution of sex | biogeography | cladistics | species | extinction | tree of life | phylogenies | three-domain system
Diversity Bacteria | archaea | plants | angiosperms | fungi | protists | Animals | deuterostome | insects | molluscs | nematodes | parasitism | Primate | mammal | vertebrate | craniata | chordate | viruses
Plant form and function Epidermis | flower | ground tissue  | leaf | phloem | plant stem | root | shoot | vascular plant | vascular tissue | xylem
Animal form and function Tissues | fertilization | embryogenesis | gastrulation | neurulation | organogenesis | differentiation | morphogenesis | metamorphosis | ontogeny  | Development | senescence  | reproduction | oogenesis | spermatogenesis
Ecology Ecosystem | biomass | food chain | indicator species | habitat | species distribution | Gaia theory | metapopulation  | life cycle | Life history | altricial - precocial | sex ratio | altruism | cooperation - foraging | learning | parental care | sexual conflict | territoriality | biosphere | climate change | conservation | biodiversity | nature reserve | edge effect | allee effect | corridor | fragmentation | pollution | invasive species | in situ - ex situ | seedbank
Research methods Laboratory techniques | Genetic engineering | transformation | gel electrophoresis | chromatography | centrifugation | cell culture | DNA sequencing | DNA microarray | green fluorescent protein | vector | enzyme assay | protein purification | Western blot | Northern blot | Southern blot | restriction enzyme | polymerase chain reaction | two-hybrid screening | in vivo - in vitro - in silico | Field techniques | Belt transect | mark and recapture | species discovery curve
Branches Anatomy | biotechnology | botany | cell biology | ecology | evolutionary biology | genetics | marine biology | microbiology | molecular biology | mycology | neuroscience | paleontology | phycology | physiology | protistology | virology | zoology
Awards Nobel Prize in Physiology or Medicine
See also Template:History of biology

Selected biography - show another

Pauling in the 1940s

Linus Carl Pauling FRS (/ˈpɔːlɪŋ/ PAW-ling; February 28, 1901 – August 19, 1994) was an American chemist, biochemist, chemical engineer, peace activist, author, and educator. He published more than 1,200 papers and books, of which about 850 dealt with scientific topics. New Scientist called him one of the 20 greatest scientists of all time. For his scientific work, Pauling was awarded the Nobel Prize in Chemistry in 1954. For his peace activism, he was awarded the Nobel Peace Prize in 1962. He is one of five people to have won more than one Nobel Prize (the others being Marie Curie, John Bardeen, Frederick Sanger, and Karl Barry Sharpless). Of these, he is the only person to have been awarded two unshared Nobel Prizes, and one of two people to be awarded Nobel Prizes in different fields, the other being Marie Curie.

Pauling was one of the founders of the fields of quantum chemistry and molecular biology. His contributions to the theory of the chemical bond include the concept of orbital hybridisation and the first accurate scale of electronegativities of the elements. Pauling also worked on the structures of biological molecules, and showed the importance of the alpha helix and beta sheet in protein secondary structure. Pauling's approach combined methods and results from X-ray crystallography, molecular model building, and quantum chemistry. His discoveries inspired the work of Rosalind Franklin, James Watson, Francis Crick, and Maurice Wilkins on the structure of DNA, which in turn made it possible for geneticists to crack the DNA code of all organisms. (Full article...)

General images - load new batch

The following are images from various biology-related articles on Wikipedia.

Things you can do

Biology portals

Categories

Select [►] to view subcategories

More topics

WikiProjects

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject: